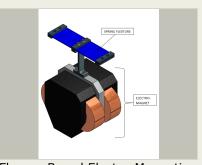
Flexure Based Electro-Magnetic Drive for High Torque Motor, Phase I

Completed Technology Project (2014 - 2014)


Project Introduction

The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme temperature environments as a technical gap to exploring deeper into our solar systems. Bear Technologies has been exploring motor design for more than 5 years. A number of designs are blended to create the basis of the proposed innovation. The research focuses on a fundamentally different motor design that explores the use of flexures to amplify the forces created by the electro-magnets. In this way, the design can be much simplified, eliminates wear, free play and the need for lubricants. Bear will focus on investigating low stress flexure designs and relatively high force electro-magnetic drives that can produce the forces needed for a high torque motor. If proven this flexure component will be an enabling technology for the extreme environment high torque motor.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Bear Technologies, LLC	Lead Organization	Industry Small Disadvantaged Business (SDB)	Oilville, Virginia
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Flexure Based Electro-Magnetic Drive for High Torque Motor, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destinations	3

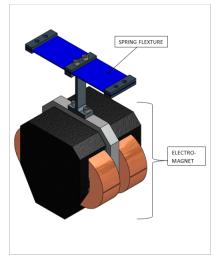
Flexure Based Electro-Magnetic Drive for High Torque Motor, Phase I

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations	
California	Virginia

Project Transitions

June 2014: Project Start


December 2014: Closed out

Closeout Summary: Flexure Based Electro-Magnetic Drive for High Torque Mot or, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/137571)

Images

Briefing Chart Image

Flexure Based Electro-Magnetic Drive for High Torque Motor, Phase I

(https://techport.nasa.gov/imag e/132052)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Bear Technologies, LLC

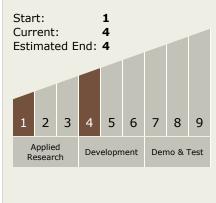
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Thomas Myrick

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Flexure Based Electro-Magnetic Drive for High Torque Motor, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

